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Abstract. A consistent quantum mechanical calculation of partial cross-sections leading to different final
states of antiprotonic helium atom was performed. For the four-body scattering wave function, correspond-
ing to the initial state, as well as for the antiprotonic helium wave function, appearing in the final state,
adiabatic approximations were used. Further, symmetric and non-symmetric effective charge (SEC, NEC)
approximations were introduced for the two-electron wave functions in the field of the two fixed charges of
the He nucleus and the antiproton. Calculations were carried out for a wide range of antiprotonic helium
states and incident energies of the antiproton below the first ionization threshold of the He atom. The
origin of the rich low-energy structure of certain cross-sections is discussed in detail.

PACS. 36.10.-k Exotic atoms and molecules (containing mesons, muons, and other unusual particles) –
25.43.+t Antiproton-induced reactions – 34.90.+q Other topics in atomic and molecular collision processes
and interactions

1 Introduction

One of the most impressive success stories of the last
decade in few-body physics is the high precision experi-
mental and theoretical studies of long lived states in an-
tiprotonic helium (for an overview see [1]). While the en-
ergy levels have been both measured and calculated to
an extreme precision, allowing even an improvement of
numerical values of fundamental physical constants, some
other relevant properties of these states were studied with
considerably less accuracy. Among these is the formation
probability of different metastable states, characterized by
total angular momentum J and “vibrational” quantum
number v, in the capture reaction

p̄ + 4He −→ (4He+ p̄)Jv + e−. (1)

The existing calculations of the capture rates of slow an-
tiprotons in He [2–4] are based on classical or semiclas-
sical approaches and they mainly address the reproduc-
tion of the overall fraction (3%) of delayed annihilation
events. Recent experimental results from the ASACUSA
project [5], however, yield some information on individual
populations of different metastable states, and our aim is
to perform a fully quantum mechanical calculation of the
formation probability of different states in the capture re-
action.

The exact solution of the quantum mechanical four-
body problem, underlying the reaction (1) is far beyond
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the scope of this work, and probably also of presently avail-
able calculational possibilities. Still, we want to make a full
quantum mechanical, though approximate, calculation of
the above process. Full is meant in the sense that all de-
grees of freedom are taken explicitly into account, all the
wave functions we use, are true four-body states.

2 Calculation method

The partial cross-section, leading to a specified final state
(J, v) of the antiprotonic helium can be written as

σJv = 2 (2π)4
Kf

Ki
µi µf

∫
dΩKf

∣∣∣
〈
Φf

Jv,Kf
|Vf |Ψ i

He,Ki

〉∣∣∣ 2

(2)
where Ψ i

He,Ki
is the exact 4-body scattering wave function

corresponding to the initial state

Φi
He, Ki

(r1, r2,R) = ΦHe(r1, r2)
1

(2π)3/2
eiKiR

, (3)

while the final state Φf
Jv, Kf

is taken in the form

Φf
Jv, Kf

(ρ1, ρ2,R) = ΦJv(ρ1,R)
1

(2π)3/2
eiKfρ2

. (4)

Here ri are the vectors pointing from the helium nucleus
to the ith electron, R is the vector between He and p̄, and
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ρi are the Jacobian coordinates of the electrons, measured
from the He−p̄ center of mass:

ri = ρi + αR; α =
mp̄

mp̄ + mHe
, (5)

while µi and µf are the reduced masses in initial and final
channels, respectively. In equation (3) ΦHe(r1, r2) denotes
the He ground state wave function, while in equation (4)
ΦJv(ρ1,R) is the antiprotonic helium final state, for which
we used a Born-Oppenheimer form [6,7]:

ΦJv(ρ,R) =
χJv(R)

R
YJM (R̂) ϕ

(2,−1)
1σ (ρ;R) (6)

where ϕ
(Z1,Z2)
1σ (ρ;R) is a two-center wave function, de-

scribing the electron (ground state) motion in the field of
two charges (Z1, Z2), separated by a fixed distance R:

(
−1

2
∆r +

Z1

r
+

Z2

|r − R|
)

ϕ
(Z1,Z2)
1σ (r;R) =

ε
(Z1,Z2)
1σ (R)ϕ(Z1,Z2)

1σ (r;R) (7)

while χJv(R) is the heavy-particle relative motion wave
function, corresponding to (4He p̄ e−) angular momentum
J and “vibrational” quantum number v:

(
− 1

2µ

[
d2

dR2
− J(J + 1)

R2

]
− 2

R

+ε
(2,−1)
1σ (R) − EJ,v

)
χJv(R) = 0, (8)

µ being the He − p̄ reduced mass. Since in the following
we shall deal only with 1σ two-center ground states, the
index 1σ will be omitted throughout the paper.

The transition potential in equation (2) is obviously
the interaction of the emitted electron (#2) with the rest
of the system:

Vf = − 2
r2

+
1

|r2 − R| +
1

|r1 − r2| . (9)

The electron anti-symmetrization is accounted for by tak-
ing an r1 ⇐⇒ r2 symmetric initial state wave function
(S = 0) and the factor 2 in front of the cross-section (2),
reflecting the indistinguishability of emitted particles [8].

The general expression (2) for the cross-section, lead-
ing to a specific state (J, v) can be rewritten in terms
of matrix elements between angular momentum eigen-
states as

σJv = 2 (2π)4
Kf

Ki
µi µf

∑
Jt,l

(2Jt + 1) |MJt

J,l|2 (10)

with

MJt

J,l =

〈[ΦJv(ρ1,R)φKf ,l(ρ2)]
Jt

Mt
|Vf |Ψ i Jt,Mt

He,Ki
(ρ1, ρ2,R) 〉, (11)

where [ ]JM stands for vector coupling, Ψ iJt,Mt

He,Ki
is the exact

scattering wave function with total angular momentum Jt,
corresponding to the initial state

[ΦJ=0
He (r1, r2)φKi,Jt(R)]Jt

Mt

and φKi,l(r) denotes free states with definite angular mo-
mentum

φK,l(r) =

√
2
π

jl(Kr)Ylm(r̂).

It can be seen from equations (10, 11), that a given an-
tiprotonic helium final state (J, v) can be formed from dif-
ferent total angular momentum states, depending on the
orbital momentum l, carried away by the emitted electron.

The simplest way of approximate evaluation of equa-
tion (2) or (10) is to use Born approximation, replacing
the exact scattering wave function Ψ i

He,Ki
by its asymp-

totic form Φi
He,Ki

from equation (3). In order to get an idea
of the feasibility of such a “full” (including all degrees of
freedom) calculation we evaluated the cross-sections σJv

in Born approximation in a wide range of quantum num-
bers (J, v). For the He ground state wave function in this
case we used the simplest variational form

ΦHe(r1, r2) = N exp (−σ(r1 + r2)) (12)

with σ = 27/16 taken from book [9]. In spite of the known
poor quality of the Born approximation for slow collisions,
due to the realistic final state wave function, we hoped to
get some information at least about the relative popula-
tion probabilities of different final states. These expecta-
tions were not confirmed, the Born cross-sections turned
to be orders of magnitude away from the more realistic
ones. The detailed results of the Born calculation can be
found in [10].

There are two basic drawbacks of the Born approxi-
mation for slow collisions and long-range forces:

— the antiproton “feels” the interaction from the He
atom, it approaches, therefore, its wave function in the
form of a plane wave has to be modified,

— the He electrons also “feel” the approaching antipro-
ton, the polarization of their wave functions has to be
taken into account.

To meet these requirements we used an adiabatic, Born-
Oppenheimer type approximation for the wave func-
tion Ψ i:

Ψ i
He,Ki

≈ ΦHe(r1, r2;R)χKi(R), (13)

where ΦHe(r1, r2;R) is the ground state wave function of
the He atom in the presence of a negative unit charge (the
antiproton) at a distance R from the He nucleus:

HHe, p̄(R)ΦHe(r1, r2;R) = ε(R)ΦHe(r1, r2;R), (14)

HHe, p̄(R) = −1
2
∆r1 − 1

2
∆r2

− 2
r1

− 2
r2

+
1

|r1 − r2| +
1

|r1 − R| +
1

|r2 − R| ;
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and χKi(R) is the antiproton scattering wave function in
the adiabatic He − p̄ potential:

VHe−p̄(R) = − 2
R

+ ε(R). (15)
(
− 1

2µ
∆R + VHe−p̄(R)

)
χKi(R) =

K2
i

2µ
χKi(R). (16)

In this approach the most difficult task is the solution of
equation (14), the determination of the wave function of
two interacting electrons in the field of two fixed charges.
Instead of performing a cumbersome variational calcula-
tion, as e.g. in [11,12], we follow an approximation scheme
proposed by Briggs, Greenland, and Solov’ev (BGS) [13],
according to which the solution of equation (14) can be
sought in the form of two single-electron two-center wave
functions:

ΦHe(r1, r2;R) ≈ ϕ(Z11,Z12)(r1;R)ϕ(Z21,Z22)(r2;R)
(17)

with
(
−1

2
∆r +

Zi1

r
+

Zi2

|r − R|
)

ϕ(Zi1,Zi2)(r1;R) =

ε(Zi1,Zi2)(R) ϕ(Zi1,Zi2)(r1;R) (18)

and the ε(R) of equations (14,15) is

ε(R) = ε(Z11,Z12)(R) + ε(Z21,Z22)(R). (19)

In this construction the effect of the electron-electron in-
teraction |r1 − r2|−1 in equation (14) is approximated by
suitable choice of the effective charges (Z11, Z12, Z21, Z22).

BGS suggest to fix the effective charges “seen” by the
first electron, Z11 and Z12, at the real charges of He and
p̄, while those for the second one, Z21 and Z22, can be
obtained from the requirement, that in the two limiting
cases R → 0 and R → ∞, the ground state energies of H−
ion and He atom should be reproduced:

ε(R → 0) = Egs(H−), ε(R → ∞) = Egs(He). (20)

The conditions (20) are fulfilled for

Z11 = 2.0, Z12 = −1.0,

Z21 = 1.3444, Z22 = −1.1095. (21)

For intermediate R–s ε(R) is given by (19).
As for He wave function, the two electrons in this case

are treated in a non-symmetric way, and the wave function
has to be symmetrized explicitly:

ΦHe(r1, r2;R) =

N(R)
[
ϕ(Z11,Z12)(r1;R)ϕ(Z21,Z22)(r2;R)

+ ϕ(Z11,Z12)(r2;R)ϕ(Z21,Z22)(r1;R)
]
. (22)

There is, however, a more symmetric realization of the
BGS idea: starting with the plausible requirement, that

Fig. 1. Electronic energies ε(R) for the NEC, SEC and varia-
tional cases.

the two electrons should “see” identical effective charges:
Z11 = Z21, Z22 = Z12 we still can impose the condi-
tions (20) for R → 0 and R → ∞, only in this case the
ε(R) will be the sum of two equal single-particle energies:

ε(R) = 2ε(Z11,Z22)(R).

For this case we get

Z11 = 1.704, Z22 = −0.9776. (23)

The ε(R) in this case is very similar to the previous
one, maybe a little closer to the “quasi-exact” variational
curve. In this second case — for brevity let us call it SEC
(Symmetric Effective Charge), in contrast to the NEC
(Non-symmetric Effective Charge) case — the wave func-
tion is simply

ΦHe(r1, r2;R) = ϕ(Z11,Z22)(r1;R)ϕ(Z11,Z22)(r2;R).
(24)

The differences between electronic energies ε(R) for
the NEC, SEC and variational calculations (performed by
Ahlrichs et al. [11] and Gibbs [12]) are shown in Figure 1.
It is seen that both cases reproduces the variational re-
sults remarkably well, while SEC is practically indistin-
guishable from the more recent of them [12].

For both choices (22) and (24) the definite total angu-
lar momentum wave function corresponding to (13) can
be written as

Ψ iJtMt

He,Ki
(r1, r2,R) = ΦHe(r1, r2;R)

χJt

Ki
(R)

KiR
YJt,Mt(R̂),

(25)
since the 1σ ground state two-center functions ϕ(r;R) do
not carry any total angular momentum: they are eigen-
functions of Ĵ2 = (l̂r + L̂R)2 with zero eigenvalue, even if
they are not eigenfunctions of l̂2r and L̂2

R separately. The
function χJt

Ki
(R) satisfies the equation

[
d2

dR2
− 2µVJt(R) + K2

i

]
χJt

Ki
(R) = 0 (26)
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Fig. 2. Effective He − p̄ potentials VJt(R) for different Jt values (Jt = 30 corresponds to the lowest curve, Jt = 45 – to the
highest one).

with the effective He − p̄ potential

VJt(R) =
Jt(Jt + 1)

2µR2
+ VHe−p̄(R). (27)

To solve equation (26) numerically, first, the asymptotic
form of χJt

Ki
(R) has to be clarified. The asymptotic behav-

ior of the 1σ two-center energies can be written as

ε(Z1,Z2)(R) −→
R→∞

−Z2
1

2
− Z2

R
+ O(R−4) (28)

and thus using equations (15) and (19) we get

VHe−p̄(R) −→
R→∞

−Z2
11 + Z2

21

2
− 2 + Z12 + Z22

R
+ O(R−4)

(29)
Dropping the irrelevant constant term from (29) we see,
that asymptotically it corresponds to a Coulomb interac-
tion with effective charge Zas = −(2 + Z12 + Z22). From
the actual values of Z12 and Z22 (21) and (23) we can con-
clude, that NEC corresponds to a weak repulsion, while
SEC — to an even weaker attraction. In reality, of course,
there is no 1/R term in the asymptotic He− p̄ interaction,
since the He atom is neutral.

It has to be noted, that in spite of the closeness of
the NEC and SEC electron energies in Figure 1, when we
include the centrifugal term, the depth of the minima and
the height of the potential barriers differ significantly (see
Fig. 2) and this fact strongly influences the low energy
capture cross-sections.

According to (29), equation (26) has to be solved with
the asymptotic condition

χJt

Ki
(R) −→

R→∞
cos δJt(Ki)FJt(η, KiR)

+ sin δJt(Ki)GJt(η, KiR), (30)

where FJt and GJt are the regular and irregular Coulomb
wave functions, with Sommerfeld-parameter

η =
Zasµ

Ki
(31)

and δJt(Ki) is the phase shift caused by the non-
Coulombic part of the potential. After the numerical so-
lution of equation (26) with boundary conditions (30) the
matrix elements (11) entering the formula (10) for the
cross-sections can be calculated by numerical integration.

3 Results and discussion

We start the discussion of our results by the remark, that
the expression (11) for the matrix element MJt

J,l in our
adiabatic approximation can be rewritten as

MJt

J,l ∼
∫

χJv(R)Sl(R; Kf )χJt

Ki
(R)dR, (32)

where χJv(R) and χJt

Ki
(R) are the He − p̄ relative mo-

tion wave functions, introduced in equations (8) and (25),
respectively, while Sl(R; Kf ) contains “all the rest”:
the three potentials (9) integrated over electron wave
functions and coordinates, angular variables of R and
summations over intermediate quantum numbers. This
representation is useful, since it turns out, that the ba-
sic dependence of the matrix elements on the quantum
numbers and incident energy is contained in the two χ
functions, while Sl(R; Kf ) weakly and smoothly depends
on its arguments with a significant decrease with increas-
ing l — the orbital momentum of the emitted electron. For
a few selected cases the three functions in the integrand
of equation (32) are shown in Figure 3. This feature of
Sl(R; Kf) allows the interpretation of equation (32) as a
matrix element of antiproton transition from the initial
state χJt

Ki
(R) into a final state χJv(R) under the action of

the effective potential Sl(R; Kf).
We have calculated the capture cross-sections lead-

ing to different final states for antiproton energies below
the first ionization threshold Elab = 30.8 eV. The over-
all energy dependence of the NEC and SEC cross-sections
σJv(E) is shown in Figures 4 and 5 for a few quantum
numbers from the region of expected largest capture prob-
ability. All cross-sections are measured in units of a2

0, a0

being the atomic length unit. The main features of these
curves can be summarized as follows.
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Fig. 3. Functions χJv, χJt
Ki

and Sl for different sets of parameters.
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Fig. 4. Energy dependence of the cross-sections for some (J, v) states, NEC case.
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Fig. 5. Energy dependence of the cross-sections for some (J, v) states, SEC case.



90 The European Physical Journal D

Fig. 6. Time delays for different values of total angular momentum Jt, NEC and SEC cases.

Obviously, final states with energy below the He
atom ground state energy (−2.9036 a.u.) have a positive
Q value, so they can be reached for arbitrary low antipro-
ton energy. For example, in Figures 4 and 5 there are such
states: with (J = 34, v = 0, 1, 2), (J = 35, v = 0, 1), and
(J = 36, v = 0). States with higher energy can be excited
only above their threshold energies; the steep rise of the
cross-sections above these thresholds can be clearly seen.

Another remarkable feature of certain cross-sections is
their rich low energy structure. This is due to the repulsive
barriers of the effective potentials VJt for Jt ≤ 38− 39, as
seen in Figure 2. These barriers, in general, strongly sup-
press the penetration of χJt

Ki
(R) into the interior region,

thus reducing the sub-barrier cross-sections. For certain
sub-barrier energies, however, there are quasi-stationary
states in these potentials, when the interior wave func-
tion has a large amplitude, leading to sharp resonances in
the cross-sections. In order to clarify the origin of these
peaks, we looked at the energy dependence of the phase
shifts δJt of equation (30). In Figure 6 we plotted the
quantity dδJt(E)/dE — the so-called time delay — which
for isolated resonances is very similar to the more fa-
miliar Breit-Wigner cross-section curve. It can be seen,
that for all angular momenta Jt for which the potential
has a barrier, there is a narrow resonance which is cor-
related with a corresponding peak in the capture cross-
section. A given cross-section curve may contain several
of these peaks, corresponding to different Jt and l values
contributing to formation of a given final state, according
to the sum in equation (10). In general, it is interesting
to note, that in contrast to a common belief, the sum of
equation (10) is not dominated by the s-electron emission
(J = Jt, l = 0) term, the p-electrons practically always,
while the d-electrons in certain cases contribute signifi-
cantly. The reason for this may be, that the decrease of
Sl(R; Kf ) with growing l could be “compensated” by the
possibility of lower Jt values, for which the effective poten-
tials contain less repulsion, thus allowing more penetration
of χJt

Ki
into the interior region.

The dδJt(E)/dE plots apart from the narrow peaks
corresponding to quasi-stationary states, show another,
much broader peak, in some cases superposed on the nar-

row one. This one is connected with specific behavior of
elastic scattering when the energy is close to the potential
maximum; it is called “orbiting” [14].

The behavior of the incident antiproton wave function
χKi(R) for different energy-regimes with respect to the
barrier maximum are illustrated in Figure 7.

Final states with higher J , for which the relevant ef-
fective potentials have no barrier show a simple energy
dependence: a steep rise above the threshold and then an
exponential decay for higher energies. The exponential fall
of the cross-sections for increasing energies is characteris-
tic for both barrier-possessing and barrier-less potentials
and is due to increasingly rapid oscillations of χJt

Ki
(R) in

the interior region which reduce the value of the integral
in equation (32).

The quantum number dependence of certain cross-
sections is shown in Figure 8 for some above-barrier ener-
gies, where such a comparison makes sense.

4 Conclusions

To our knowledge, this is the first fully quantum me-
chanical calculation of the process (1), with all degrees
of freedom taken explicitly into account. The adiabatic
wave functions used both for initial and final states seem
to be reasonably realistic. The results show, that quan-
tum mechanical treatment is really necessary, especially
in the low-energy region, where barrier penetration and
resonance effects are essential. The energy dependence of
the calculated cross-sections shows, that the different final
states (J, v) are excited with a large probability in a rel-
atively narrow window of the incident antiproton energy.
In principle, this property could be used for selective ex-
citation of certain states. On the other hand, the strong
energy dependence of the cross-sections prevents us from
making statements about the experimentally observable
population numbers of different states since the initial en-
ergy distribution of the antiprotons before the capture is
unknown. Even if this distribution was known, the ob-
served and calculated population numbers could deviate
due to collisional (or other) de-excitation of states in the
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Fig. 7. Incident antiproton wave functions (in arbitrary units) with their potentials. The incident energies (in CM, the baselines
for the wave function plots) are chosen to represent different cases with respect to barrier maxima. (a) Sub-barrier non-resonant
energy; (b) sub-barrier resonant energy; (c) “orbiting”: energy close to the potential maximum; (d) above-barrier energy.

Fig. 8. Cross-sections for the lowest few vibrational quantum numbers v and different incident antiproton energies (NEC and
SEC calculations) plotted against the principal quantum number N = J + v + 1.



92 The European Physical Journal D

time interval between the capture and the measurement.
Nevertheless, we plan to make calculation of primary pop-
ulations taking some trial energy distributions for the an-
tiprotons.

In the discussion of our results we deliberately did
not take a stand concerning the NEC and SEC approxi-
mations. In general, the structure of both cross-sections
(energy- and quantum number dependence) is similar,
however, SEC gives considerably larger cross-sections,
probably due to the somewhat larger attraction of the
SEC effective potentials. We personally think, that SEC
is physically more realistic, and the coincidence of SEC’s
electronic energies with those of recent variational calcu-
lation [12] can be seen as some confirmation for this point
of view.
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